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Abstract

We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes
the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the
zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the
flow problem. This non-alignment causes severe difficulties w.r.t. the discretization of the localized surface tension force
and the discretization of the flow variables. In cases with large surface tension forces the pressure has a large jump across
the interface. In standard finite element spaces, due to the non-alignment, the functions are continuous across the interface
and thus not appropriate for the approximation of the discontinuous pressure. In many simulations these effects cause
large oscillations of the velocity close to the interface, so-called spurious velocities. In this paper, for a simplified model
problem, we give an analysis that explains why known (standard) methods for discretization of the localized force term
and for discretization of the pressure variable often yield large spurious velocities. In the paper [S. Groß, A. Reusken,
Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, Preprint 262,
IGPM, RWTH Aachen, SIAM J. Numer. Anal. (accepted for publication)], we introduce a new and accurate method
for approximation of the surface tension force. In the present paper, we use the extended finite element space (XFEM),
presented in [N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J.
Numer. Meth. Eng. 46 (1999) 131–150; T. Belytschko, N. Moes, S. Usui, C. Parimi, Arbitrary discontinuities in finite ele-
ments, Int. J. Numer. Meth. Eng. 50 (2001) 993–1013], for the discretization of the pressure. We show that the size of spu-
rious velocities is reduced substantially, provided we use both the new treatment of the surface tension force and the
extended pressure finite element space.
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1. Introduction

Let X � R3 be a convex polyhedral domain containing two different immiscible incompressible phases. The
time dependent subdomains containing the two phases are denoted by X1(t) and X2(t) with
�X ¼ �X1 [ �X2 and X1 \ X2 ¼ ;. We assume that X1 and X2 are connected and oX1 \ oX ¼ ; (i.e., X1 is com-
pletely contained in X). The interface is denoted by CðtÞ ¼ �X1ðtÞ \ �X2ðtÞ. The standard model for describing
incompressible two-phase flows consists of the Navier–Stokes equations in the subdomains with the coupling
condition
½rn�C ¼ sKn
at the interface, i.e., the surface tension balances the jump of the normal stress on the interface. We use the
notation ½v�C ¼ limx!CðvjX2

ðxÞ � vjX1
ðxÞÞ for the jump across C, n ¼ nC is the unit normal at the interface C

(pointing from X1 into X2), K the curvature of C and r the stress tensor defined by
r ¼ �pIþ lDðuÞ; DðuÞ ¼ ruþ ðruÞT
with p ¼ pðx; tÞ the pressure, u ¼ uðx; tÞ the velocity and l the viscosity. We assume continuity of u across the
interface. Combined with the conservation laws for mass and momentum we obtain the following standard
model, cf. for example [4–7],
qiut � divðliDðuÞÞ þ qiðu � rÞu�rp ¼ qig in Xi � ½0; T �
divu ¼ 0 in Xi � ½0; T �

�
for i ¼ 1; 2 ð1:1Þ

½rn�C ¼ sKn; ½u�C ¼ 0: ð1:2Þ

The constants li; qi denote viscosity and density in the subdomain Xi, i ¼ 1; 2, and g is an external volume
force (gravity). To make this problem well-posed we need suitable boundary conditions for u and an initial
condition uðx; 0Þ.

The location of the interface C(t) is in general unknown and is coupled to the local flow field which trans-
ports the interface. Various approaches are used for approximating the interface. Most of these can be clas-
sified as either front-tracking or front-capturing techniques. In this paper, we use a level set method [8–10] for
capturing the interface.

The two Navier–Stokes equations in Xi, i ¼ 1; 2, in (1.1) together with the interfacial condition (1.2) can be
reformulated in one Navier–Stokes equation on the whole domain X with an additional force term localized at
the interface, the so-called continuum surface force (CSF) model [11,8]. We restrict ourselves to the stationary
case and to homogeneous Dirichlet boundary conditions, i.e., u = 0 on oX. For a weak formulation of this
problem (as in, for example [12–16]) we introduce the spaces
V :¼ H 1
0ðXÞ

3
; Q :¼ L2

0ðXÞ ¼ q 2 L2ðXÞj
Z

X
qdx ¼ 0

� �
:

The standard L2(X) scalar product is denoted by (Æ, Æ) and for the Sobolev norm in V we use the notation k � k1.
The weak formulation of the stationary CSF model is as follows: determine ðu; pÞ 2 V� Q such that for all
v 2 V and all q 2 Q
Z

X

l
2

DðuÞ : DðvÞdxþ ðqu � ru; vÞ þ ðdivv; pÞ;¼ ðqg; vÞ þ fCðvÞ;

ðdivu; qÞ ¼ 0

ð1:3Þ
holds, with
fCðvÞ :¼ s
Z

C
KnC � vds ð1:4Þ
the localized surface tension force and DðuÞ : DðvÞ ¼ trðDðuÞDðvÞÞ. The functions l and q are strictly positive
and piecewise constant in Xi; i ¼ 1; 2, with values l ¼ li; q ¼ qi in Xi. For C sufficiently smooth we have
supx2CjKðxÞj 6 c <1 and
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jfCðvÞj 6 cs
Z

C
jnC � vjds 6 ckvkL2ðCÞ 6 ckvk1 for all v 2 V: ð1:5Þ
Thus fC 2 V0 holds and hence (1.3) is well-defined. Under the usual assumptions (cf. [17]) the weak formula-
tion of the Navier–Stokes equations as in (1.3) has a unique solution. Due to the Laplace–Young law, typically
the pressure has a jump across the interface, when surface tension forces are present ðs 6¼ 0Þ, cf. Remark 1.1
below. In numerical simulations, this discontinuity and inadequate approximation of the localized surface
force term often lead to strong unphysical oscillations of the velocity vector at the interface, so-called spurious
velocities. In this paper, we present an alternative finite element discretization approach which significantly
reduces the size of these spurious velocities compared to known standard methods. For the motivation and
analysis of our approach we further simplify (1.3) and consider a Stokes problem with a constant viscosity
(l1 ¼ l2 ¼ l in X). We emphasize, however, that the methods that we present are not restricted to this sim-
plified problem but apply to the general Navier–Stokes model (1.3) as well. We introduce the following Stokes
problem: find ðu; pÞ 2 V� Q such that
aðu; vÞ þ bðv; pÞ ¼ ðqg; vÞ þ fCðvÞ for all v 2 V;

bðu; qÞ ¼ 0 for all q 2 Q;
ð1:6Þ
where
aðu; vÞ :¼
Z

X
lrurvdx; bðv; qÞ ¼

Z
X

qdivvdx
with a viscosity l > 0 that is constant in X. The unique solution of this problem is denoted by ðu�; p�Þ 2 V� Q.

Remark 1.1. The problem (1.6) has a smooth velocity solution u� 2 ðH2ðXÞÞ3 \ V and a piecewise smooth

pressure solution p with pjXi
2 H1ðXiÞ; i ¼ 1; 2, which has a jump across C. These smoothness properties can be

derived as follows. The curvature K is a smooth function (on C). Thus there exists p̂1 2 H 1ðX1Þ such that
ðp̂1ÞjC ¼K (in the sense of traces). Define p̂ 2 L2ðXÞ by p̂ ¼ p̂1 in X1, p̂ ¼ 0 on X2. Note that for all v 2 V,
fCðvÞ ¼ s
Z

C
KnC � vds ¼ s

Z
C

p̂1nC � vds ¼ s
Z

X1

p̂1divvdxþ s
Z

X1

rp̂1 � vdx ¼ s
Z

X
p̂divvdxþ s

Z
X

~g � vdx
with ~g 2 L2ðXÞ3 given by ~g ¼ rp̂1 in X1, ~g ¼ 0 on X2. Thus ðu�; p� � sp̂Þ satisfies the standard Stokes equations
aðu�; vÞ þ bðv; p� � sp̂Þ ¼ ðqgþ s~g; vÞ for all v 2 V;

bðu�; qÞ ¼ 0 for all q 2 Q:
From regularity results on Stokes equations and the fact that X is convex we conclude that
u� 2 H 2ðXÞ \ H 1

0ðXÞ and p� � sp̂ 2 H 1ðXÞ. Thus ½p� � sp̂�C ¼ 0 (a.e. on C) holds, which implies
½p��C ¼ s½p̂�C ¼ �sK;
i.e., p* has a jump across C of the size sK.

Example 1.2. A simple example, that is used in the numerical experiments in Section 4 is the following. Let
X :¼ ð�1; 1Þ3 and X1 a sphere with centre at the origin and radius r < 1. We take g ¼ 0. In this case, the
curvature is constant, K ¼ 2

r, and the solution of the Stokes problem (1.6) is given by u� ¼ 0, p� ¼ s 2
r þ c0 on

X1, p� ¼ c0 on X2 with a constant c0 such that
R

X p� dx ¼ 0.

In the remainder of this paper, we discuss finite element discretization methods for the problem (1.6). We
use a stable family fThgh>0 of consistent (i.e., no hanging nodes) nested triangulations, consisting of tetrahe-
dra. For the evaluation of the surface tension force term fCðvÞ and of ðqg; vÞ one needs the location of the
interface C (note that q ¼ qi is piecewise constant). The interface is approximated by a piecewise planar sur-
face Ch, which is the zero level of an approximation /h of the continuous level set function /, cf. Section 2.1
for more details. Once Ch is known we can use a stable finite element pair (e.g. Hood–Taylor) for the discret-
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ization of the Stokes problem (1.6). We will show that, even for a relatively simple problem as in Example 1.2,
this approach is not satisfactory. The discretization error (velocity in k � k1, pressure in k � kL2 ) turns out to be
proportional to

ffiffiffi
h
p

. This rather slow convergence (for h # 0) is caused by two effects, namely a poor approx-
imation of fCðvÞ and the use of a pressure finite element space that does not allow jumps in the pressure across
Ch. The former effect has been analyzed in another paper [1]. The analysis in [1] results in an improved approx-
imation of fCðvÞ as outlined in Section 2.1. The main topic of this paper is the introduction of an improved
pressure finite element space to eliminate the second effect that causes the poor

ffiffiffi
h
p

convergence behaviour.
This so-called extended finite element (XFEM) space is explained in Section 3. In Section 4, results of numer-
ical experiments are presented that show a significant improvement of the discretization method (errors �ha

with a P 1 instead of
ffiffiffi
h
p

), provided both the improved treatment of fCðvÞ and the extended pressure finite
element space are used. The extended finite element method is presented in [2]. In that paper, the method is
applied to problems from solid mechanics. We do not know of any paper, where for a two-phase flow problem
the XFEM is applied for the pressure discretization in combination with level set interface capturing and a
Laplace–Beltrami approximation of the surface tension force fC.

2. Discretization methods

Let fThgh>0 be a stable family of consistent (i.e., no hanging nodes) nested triangulations, consisting of
tetrahedra. These triangulations are locally refined close to the interface C, cf. Section 4. Let Vh � V,
Qh � Q be a stable pair of finite element spaces. We assume that a piecewise planar surface Ch is known, such
that
distðC;ChÞ 6 ch2
C ð2:1Þ
with hC the size (diameter) of the tetrahedra in the locally refined region that contains the interface. This
assumption is reasonable if one uses piecewise quadratic finite elements for the discretization of the level
set function, cf. [1]. Note that in general the faces of Ch are not aligned with the tetrahedral triangulation
Th, cf. Fig. 1. The induced polyhedral approximations of the subdomains are X1;h ¼ intðChÞ (region in the
interior of Ch) and X2;h ¼ X n X1;h. Furthermore, we define the piecewise constant approximation of the den-
sity qh by qh ¼ qi on Xi, h. We assume that for vh 2 Vh the integrals in
ðqhg; vhÞ ¼ q1

Z
X1;h

g � vh dxþ q2

Z
X2;h

g � vh dx
can be computed with high accuracy. This can be realized efficiently in our implementation because if one ap-
plies the standard finite element assembling strategy by using a loop over all tetrahedra T 2Th, then T \ Xi;h

is either empty or T or a relatively simple polygonal subdomain (due to the construction of Ch, cf. [18]).
The discretization of (1.6) is as follows: determine ðuh; phÞ 2 Vh � Qh such that
aðuh; vhÞ þ bðvh; phÞ ¼ ðqhg; vhÞ þ fChðvhÞ for all vh 2 Vh;

bðuh; qhÞ ¼ 0 for all qh 2 Qh:
ð2:2Þ
The approximation fChðvhÞ of fCðvhÞ is discussed in Section 2.1. Using standard finite element error analysis
(Strang lemma) we get a discretization error bound. In our applications, we are particularly interested in prob-
lems with l	 1. Therefore, in the next theorem we give a discretization error bound that shows the depen-
dence on l.
Fig. 1. Construction of approximate interface for 2D case.
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Theorem 2.1. Let ðu�; p�Þ, ðuh; phÞ be the solution of (1.6) and (2.2), respectively. Then the error bound
lkuh � u�k1 þ kph � p�kL2 6 c l inf
vh2Vh

kvh � u�k1 þ inf
qh2Qh

kqh � p�kL2 þ sup
vh2Vh

jðqg; vhÞ � ðqhg; vhÞj
kvhk1

�

þ sup
vh2Vh

jfCðvhÞ � fChðvhÞj
kvhk1

�
ð2:3Þ
holds with a constant c independent of h, l and q.

Proof. The result follows from a scaling argument. For f 2 V0, fh 2 V0h let ðû; p̂Þ; ðûh; p̂hÞ be the solutions of the
l-independent Stokes problems
Z

X
rûrvdxþ bðv; p̂Þ ¼ f ðvÞ for all v 2 V;

bðû; qÞ ¼ 0 for all q 2 Q; ð2:4ÞZ
X
rûhrvh dxþ bðvh; p̂hÞ ¼ fhðvhÞ for all vh 2 Vh;

bðûh; qhÞ ¼ 0 for all qh 2 Qh: ð2:5Þ
Standard error analysis for Stokes equations, using the Strang lemma, yields
kûh � ûk1 þ kp̂h � p̂kL2 6 c inf
vh2Vh

kvh � ûk1 þ inf
qh2Qh

kqh � p̂kL2 þ sup
vh2Vh

jf ðvhÞ � fhðvhÞj
kvhk1

� �
ð2:6Þ
with a constant c independent of f, fh and h. Now note that ðu�; p�Þ satisfies (2.4) with û ¼ u�, p̂ ¼ 1
l p�,

f ðvÞ ¼ 1
l ððqg; vÞ þ fCðvÞÞ and ðuh; phÞ satisfies (2.5) with ûh ¼ uh, p̂h ¼ 1

l ph, fhðvhÞ ¼ 1
l ððqhg; vhÞ þ fChðvhÞÞ. The

result in (2.6) then yields (2.3). h

Remark 2.2. We assume X to be convex and thus the Stokes problem in (2.4) is H2-regular. Using a standard
duality argument it follows that kû� ûhkL2

6 chkû� ûhk1 and hence, due to û ¼ u�, ûh ¼ uh (cf. proof of The-
orem 2.1) we get
ku� � uhkL2
6 chku� � uhk1
with a constant c independent of l and h.

Corollary 2.3. Let ðu�; p�Þ, ðuh; phÞ be as in Theorem 2.1 and define
rh :¼ sup
vh2Vh

jðqg; vhÞ � ðqhg; vhÞj
kvhk1

þ sup
vh2Vh

jfCðvhÞ � fChðvhÞj
kvhk1

:

The following holds:
kuh � u�k1 6 c inf
vh2Vh

kvh � u�k1 þ
1

l
inf

qh2Qh

kqh � p�kL2 þ
1

l
rh

� �
; ð2:7Þ

kuh � u�kL2
6 ch inf

vh2Vh

kvh � u�k1 þ
1

l
inf

qh2Qh

kqh � p�kL2 þ
1

l
rh

� �
; ð2:8Þ

kph � p�kL2 6 c l inf
vh2Vh

kvh � u�k1 þ inf
qh2Qh

kqh � p�kL2 þ rh

� �
ð2:9Þ
with constants c independent of h, l and q. We observe that if l	 1 then in the velocity error we have an error

amplification effect proportional to 1
l. This effect does not occur in the discretization error of the pressure, cf. Re-

mark 4.2 at the end of the paper.
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We comment on the terms occuring in the bound in (2.3). As explained above (Remark 1.1), the solution u*

of (1.6) is smooth and thus with standard finite element spaces Vh for the velocity (e.g. P1 or P2) we obtain
inf vh2Vhkvh � u�k1 6 ch. Due to (2.1) we get jvolðXiÞ � volðXi;hÞj 6 ch2

C, i ¼ 1; 2, and using this we obtain
jðqg; vhÞ � ðqhg; vhÞj 6
X2

i¼1

qi

Z
Xi

g � vh dx�
Z

Xi;h

g � vh dx

�����
����� 6 cðq1 þ q2ÞhCkvhk1;
and thus an OðhCÞ bound for the third term in (2.3). The remaining two terms in (2.3) are less easy to handle.
In Section 2.1, we treat the fourth term. It is shown that a (not so obvious) approximation method based on a
Laplace–Beltrami representation results in a OðhCÞ bound for this term. The second term in (2.3) is discussed in
Section 2.2. It is shown that standard finite element spaces (e.g. P0 or P1) lead to an error infqh2Qh

kqh � p�kL2

�
ffiffiffiffiffi
hC

p
. This motivates the use of another pressure finite element space, as explained in Section 3, which has

much better approximation properties for functions that are piecewise smooth but discontinuous across Ch.

Remark 2.4. Consider the problem as in Example 1.2. Then u� ¼ 0, g ¼ 0 and the bound in (2.3) simplifies to
lkuhk1 þ kph � p�kL2 6 c inf
qh2Qh

kqh � p�kL2 þ sup
vh2Vh

jfCðvhÞ � fChðvhÞj
kvhk1

� �
: ð2:10Þ
2.1. Laplace–Beltrami approximation of fCðvÞ

In this section, we explain how the polyhedral approximation Ch of C is constructed and how, using Ch, the
localized force term fCðvÞ is approximated.

The level set equation for / (signed distance function) is discretized with continuous piecewise quadratic
finite elements on the tetrahedral triangulation Th. The piecewise quadratic finite element approximation of
/ on Th is denoted by /h. We now introduce one further regular refinement of Th, resulting in T0

h. Let
Ið/hÞ be the continuous piecewise linear function on T0

h which interpolates /h at all vertices of all tetrahedra
in T0

h. The approximation of the interface C is defined by
Ch :¼ fx 2 XjIð/hÞðxÞ ¼ 0g ð2:11Þ

and consists of piecewise planar segments. The mesh size parameter h is the maximal diameter of these seg-
ments. This maximal diameter is approximately the maximal diameter of the tetrahedra in T0

h that contain
the discrete interface, i.e., h ¼ hC is approximately the maximal diameter of the tetrahedra in T0

h that are close

to the interface. In Fig. 1, we illustrate this construction for the two-dimensional case.
Each of the planar segments of Ch is either a triangle or a quadrilateral. The quadrilaterals can (formally) be

divided into two triangles. Thus Ch consists of a set of triangular faces. Related to assumption (2.1) we note the
following. If we assume j Ið/hÞðxÞ � /ðxÞ j6 ch2

C for all x in a neighbourhood of C, which is reasonable for a
smooth / and piecewise quadratic /h, then we have
distðC;ChÞ ¼ max
x2Ch

j/ðxÞj ¼ max
x2Ch

j/ðxÞ � Ið/hÞðxÞj 6 ch2
C;
and thus (2.1) is satisfied.
The approximation of the localized surface tension force is based on a Laplace–Beltrami characterization of

the curvature. For this we have to introduce some elementary notions from differential geometry. Let U be an
open subset in R3 and C a connected C2 compact hypersurface contained in U. For a sufficiently smooth func-
tion g : U ! R the tangential derivative (along C) is defined by projecting the derivative on the tangent space
of C, i.e.
rCg ¼ rg �rg � nCnC: ð2:12Þ

The Laplace–Beltrami operator on C is defined by
DCg :¼ rC � rCg:
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It can be shown that rCg and DCg depend only on values of g on C. For vector valued functions f ; g : C! R3

we define
DCf :¼ ðDCf1;DCf2;DCf3ÞT; rCf � rCg :¼
X3

i¼1

rCfi � rCgi:
We recall the following basic result from differential geometry.

Theorem 2.5. Let idC : C! R3 be the identity on C and K ¼ j1 þ j2 the sum of the principal curvatures. For all

sufficiently smooth vector functions v on C the following holds:
Z
C
KnC � vds ¼ �

Z
C
ðDCidCÞ � vds ¼

Z
C
rCidC � rCvds: ð2:13Þ
In view of the result in this theorem an obvious choice for fChðvhÞ in (2.2) (that is used in, e.g. [19,20,12,18,21])
is the following:
fChðvhÞ :¼ s
Z

Ch

rCh idCh � rCh vh ds; vh 2 Vh: ð2:14Þ
Here idCh denotes the identity Ch ! R3, i.e., the coordinate vector on Ch. Analysis and numerical experiments
in [1] yield that for this choice we have
sup
vh2Vh

jfCðvhÞ � fChðvhÞj
kvhk1

6 c
ffiffiffiffiffi
hC

p
; ð2:15Þ
and that this bound is sharp w.r.t. the order of convergence for hC fl 0. In view of the analysis in Section 2 this
approximation error is relatively large, compared to the OðhÞ bounds for the first and third term in (2.3). In
Ref. [1], a modified surface tension force discretization with better approximation quality is presented. We
briefly explain this method. For this we have to introduce some further notation. Let nh be the unit normal
on Ch (outward pointing from X1;h). Since Ch is planar piecewise triangular, this normal is piecewise constant
(and not defined at the edges of the surface triangulation). We define the orthogonal projection Ph:
PhðxÞ :¼ I� nhðxÞnhðxÞT for x 2 Ch; x not on an edge:
Recall that the discrete level set function /h is piecewise quadratic. Define
~nhðxÞ :¼ r/hðxÞ
kr/hðxÞk

; ~PhðxÞ :¼ I� ~nhðxÞ~nhðxÞT; x 2 Ch; x not on an edge:
For the discrete surface tension force as in (2.14) we have, due to rCh g ¼ Phrg (for smooth functions g), the
representation
fChðvhÞ ¼ s
X3

i¼1

Z
Ch

PhðxÞei � rChðvhÞi ds ð2:16Þ
with ei the ith basis vector in R3 and ðvhÞi the ith component of vh. The modified discrete surface tension force
is given by
~f ChðvhÞ ¼ s
X3

i¼1

Z
Ch

~PhðxÞei � rChðvhÞi ds: ð2:17Þ
The implementation of this functional requires only a minor modification if the implementation of the one in
(2.16) is available. In Ref. [1], it is shown that under reasonable assumptions on Ch and /h, we have the error
bound
sup
vh2Vh

jfCðvhÞ � ~f ChðvhÞj
kvhk1

6 chC: ð2:18Þ
This bound has the desired OðhCÞ behaviour (instead of Oð
ffiffiffiffiffi
hC

p
Þ, cf (2.15)). Numerical experiments in [1] show

a rate of convergence that is even somewhat higher than first order in hC.
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2.2. Analysis of the term infqh2Qh
kqh � p�kL2

In this section, we consider the approximation error infqh2Qh
kqh � p�kL2 for a few standard finite element

spaces Qh and explain why in general for a function p* that is discontinuous across Ch one can expect no better
bound for this approximation error than c

ffiffiffi
h
p

. This serves as a motivation for an improved pressure finite ele-
ment space as presented in Section 3. To explain the effect underlying the

ffiffiffi
h
p

behaviour of the error bound we
analyze a concrete two-dimensional example as illustrated in Fig. 2. We take X ¼ ð0; 1Þ2 and define
X1 :¼ fðx; yÞ 2 X j x 6 1� yg, X2 :¼ X n X1. A family of triangulations fThgh>0 is constructed as follows.
The starting triangulation T0 consists of two triangles, namely the ones with vertices {(0, 0), (0, 1), (1, 1)}
and {(0,0),(1, 0),(1, 1)}. Then a global regular refinement strategy (connecting the midpoints of edges) is
applied repeatedly. This results in a nested sequence of triangulations T hk , k ¼ 1; 2; . . ., with mesh size
hk ¼ 2�k. In Fig. 2, the triangulation Th2

is shown. As interface we take C ¼ fðx; yÞ 2 X j y ¼ 1� xg. The
set of triangles that contains the interface is given by (with h :¼ hk)
TC
h :¼ fT 2Thjmeas1ðT \ CÞ > 0g:
In Fig. 2, the elements in TC
h2

are colored grey.
For h = hk we consider the finite element spaces
Q0
h :¼ fp j pjT 2 P0 for all T 2Thg ðpiecewise constantsÞ;

Q1;disc
h :¼ fp j pjT 2 P1 for all T 2Thg ðpiecewise linears; discontinuousÞ;

Q1
h :¼ fp 2 CðXÞ j pjT 2 P1 for all T 2Thg ðpiecewise linears; continuousÞ:
Note that
Qj
h � Q1;disc

h for j ¼ 0; 1: ð2:19Þ

We take p* as follows: p�ðx; yÞ ¼ cp > 0 for all ðx; yÞ 2 X1, pðx; yÞ ¼ 0 for all ðx; yÞ 2 X2. We study
infqh2Qh

kqh � p�kL2 for Qh 2 fQ0
h;Q

1;disc
h ;Q1

hg. For Qh ¼ Q1;disc
h the identity
inf
qh2Q1;disc

h

kqh � p�k2
L2 ¼

X
T2TC

h

min
q2P1

kq� p�k2
L2ðT Þ
holds. Take T 2TC
h . Using a quadrature rule on triangles that is exact for all polynomials of degree two we

get, cf. Fig. 2,
min
q2P1

kq� p�k2
L2ðT Þ ¼ min

q2P1

Z
T L

ðq� cpÞ2 dxdy þ
Z

T U

q2 dxdy
� �

¼ 1

12
h2 min

q2P1

ððqðm3Þ � cpÞ2 þ ðqðm4Þ � cpÞ2 þ ðqðmÞ � cpÞ2 þ qðm1Þ2 þ qðm2Þ2 þ qðmÞ2Þ

P
1

12
h2 min

q2P1

ðqðmÞ � cpÞ2 þ qðmÞ2
� 	

¼ 1

24
c2

ph2:
Fig. 2. Triangulation T h2
and a triangle T 2TC

hk
.
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Thus we have
inf
qh2Q1;disc

h

kqh � p�kL2 P
X

T2TC
h

1

24
c2

ph2

0
@

1
A

1
2

¼ 2

h
1

24
c2

ph2

� �1
2

¼ 1

2
ffiffiffi
3
p cp

ffiffiffi
h
p

:

Due to (2.19) this yields
inf
qh2Qh

kqh � p�kL2 P
1

2
ffiffiffi
3
p cp

ffiffiffi
h
p

for Qh 2 fQ0
h;Q

1;disc
h ;Q1

hg: ð2:20Þ
To derive an upper bound for the approximation error we choose a suitable qh 2 Qh. First consider Qh ¼ Q0
h

and take q0
h 2 Q0

h as follows: ðq0
hÞjT ¼ cp for all T with meas1ðT \ X1Þ > 0, q0

h ¼ 0 otherwise. With this choice we
get
kq0
h � p�kL2 ¼ m

T2TC
h

kq0
h � p�k2

L2ðT Þ

 !1
2

¼
X

T2TC
h

c2
p

1

4
h2

0
@

1
A

1
2

¼ 1ffiffiffi
2
p cp

ffiffiffi
h
p

: ð2:21Þ
For Qh ¼ Q1
h we take q1

h :¼ Ihðp�Þ, where Ih is the nodal interpolation operator (note: p� ¼ cp on C). Elemen-
tary computations yield
kq1
h � p�kL2 ¼

1

12
c2

ph
� �1

2

¼ 1

2
ffiffiffi
3
p cp

ffiffiffi
h
p

: ð2:22Þ
Combination of (2.19)–(2.22) yields
1

2
ffiffiffi
3
p cp

ffiffiffi
h
p
6 inf

qh2Qh

kqh � p�kL2 6
1ffiffiffi
2
p cp

ffiffiffi
h
p

for Qh 2 fQ0
h;Q

1;disc
h ;Q1

hg: ð2:23Þ
Note that this approximation error result does not change if we apply only local refinement close to the inter-
face and then replace h by hC, where the latter denotes the mesh size of the triangles in TC

h .
If instead of piecewise constants or piecewise linears we consider polynomials of higher degree, the approx-

imation error still behaves like
ffiffiffi
h
p

.
Similar examples, which have a

ffiffiffi
h
p

approximation error behaviour, can be constructed using these finite
element spaces on tetrahedral triangulations in 3D.
3. Extended finite element space for the pressure

The analysis in the previous section, which is confirmed by numerical experiments in Section 4, leads to the
conclusion that there is a need for an improved finite element space for the pressure. In this section, we present
such a space which is based on an idea presented in [2,3]. In that paper, a so-called extended finite element
space (XFEM) is introduced which has good approximation properties for interface type of problems.

Here we apply the XFEM method to two-phase flow problems by constructing an extended pressure finite
element space QC

h . In this section, we explain the method and discuss some implementation issues. In Section 4,
results of numerical experiments with this method are presented.

For k P 1 fixed we introduce the standard finite element space
Qh ¼ Qk
h ¼ fq 2 CðXÞ \ L2

0ðXÞ j q jT 2 Pk for all T 2Tg:

For k = 1, for example, this is the standard finite element space of continuous piecewise linear functions.

We define the index set J ¼ f1; . . . ; ng, where n ¼ dimQh is the number of degrees of freedom. Let
B :¼ fqjg

n
j¼1 be the nodal basis of Qh, i.e. qjðxiÞ ¼ di;j for i; j 2 J where xi 2 R3 denotes the spatial coordinate

of the ith degree of freedom.
The idea of the XFEM method is to enrich the original finite element space Qh by additional basis functions

qX
j for j 2 J0 where J0 � J is a given index set. An additional basis function qX

j is constructed by multiplying
the original nodal basis function qj by a so-called enrichment function Uj:
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qX
j ðxÞ :¼ qjðxÞUjðxÞ: ð3:1Þ
This enrichment yields the extended finite element space
QX
h :¼ span fqjgj2J [ fqX

j gj2J0
� 	

:

This idea was introduced in [2] and further developed in [3] for different kinds of discontinuities (kinks, jumps),
which may also intersect or branch. The choice of the enrichment function depends on the type of disconti-
nuity. For representing jumps the Heaviside function is proposed to construct appropriate enrichment func-
tions. Basis functions with kinks can be obtained by using the distance function as enrichment function.

In our case, the finite element space Q1
h is enriched by discontinuous basis functions qX

j for
j 2 J0 ¼ JC :¼ fj 2 J j meas2ðC \ suppqjÞ > 0g, as discontinuities only occur at the interface. Let
d : X! R be the signed distance function (or an approximation to it) with d negative in X1 and positive in
X2. For example the level set function u could be used for d. Then by means of the Heaviside function H

we define
HCðxÞ :¼ HðdðxÞÞ ¼
0 x 2 X1;

1 x 2 X2:

�

As we are interested in functions with a jump across the interface we define the enrichment function
UH
j ðxÞ :¼ HCðxÞ � HCðxjÞ ð3:2Þ
and a corresponding function qX
j :¼ qj � UH

j ; j 2 J0. The second term in the definition of UH
j is constant and

may be omitted (as it does not introduce new functions in the function space), but ensures the nice property
qX

j ðxiÞ ¼ 0, i.e. qX
j vanishes in all degrees of freedom. As a consequence, we have
suppqX
j � supp qj \

[
T2TC

h

T

0
@

1
A; ð3:3Þ
where TC
h ¼ fT 2Th j meas2ðT \ CÞ > 0g. Thus qX

j 
 0 in all T with T 62TC
h .

In the following, we will use the notation qC
j :¼ qjU

H
j and
QC
h :¼ spanðfqjjj 2 Jg [ fqC

j jj 2 JCgÞ
to emphasize that the extended finite element space QC
h depends on the location of the interface C. In partic-

ular, the dimension of QC
h may change if the interface is moved. The shape of the extended basis functions for

the 1D case is sketched in Fig. 3.

Remark 3.1. Note that QC
h can also be characterized by the following property: q 2 QC

h if and only if there exist
functions q1; q2 2 Qh such that qjXi

¼ qijXi
, i ¼ 1; 2.
Fig. 3. Extended finite element basis functions qi; q
C
i (dashed) and qj; q

C
j (solid) for 1D case.
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The application of this method to the solution of two-phase flow problems leads to several challenging
issues which should be addressed. Theoretical questions like stability of the Vh � QC

h finite element pair or
the convergence order of the method are still unanswered. For pressure solutions p with
pjXi
2 H 1ðXiÞ; i ¼ 1; 2 (cf. Remark 1.1), we expect
inf
qh2QC

n

kqh � pkL2 6 ch:
This yields the desired OðhÞ bound, cf. Section 2.
An important issue from the practical point of view is the design of efficient and robust solvers for the

resulting discrete problems which have to be adapted to the extended pressure finite element space. These
are topics of current research, cf. Section 5.

Remark 3.2. In Ref. [3] the XFEM is applied to a few problems from linear elasticity demonstrating the ability
of the method to capture jumps and kinks. These discontinuities also branch or intersect in some of the
examples, in this case more elaborate constructions of the enrichment functions are used.

In Ref. [22], the XFEM is also applied to a two-phase flow problem. In that paper, discontinuous material
properties q and l, but no surface tension forces were taken into account. Thus there is no jump in pressure,
but the solution exhibits kinks at the interface. For the pressure and the level set function standard finite
element spaces are used. The velocity field is discretized with an extended finite element space enriched by
qX

j ðxÞ ¼ qjðxÞ � jdðxÞj to capture the kinks at the interface.

Remark 3.3. We comment on two related approaches that are known in the literature. In Refs. [23,24], a dis-
continuous finite element space V disc

h is introduced and applied to a scalar elliptic interface problem, where the
continuity of the solution is enforced by Lagrangian multipliers. For the construction of V disc

h the standard
finite element space Q1

h is modified by replacing each of the basis functions qj; j 2 JC, by the two functions
qC;i
j ðxÞ ¼

qjðxÞ; x 2 Xi;

0; x 62 Xi:

�
i ¼ 1; 2:
This yields the same finite element space as the XFEM approach, i.e. V disc
h ¼ QC

h , cf. Remark 3.1. In this sense
the approach of Hansbo is a special case of the XFEM approach where the latter is more general as it can
relatively easy be adapted to other kinds of discontinuities. In Ref. [24], an error analysis for this finite element
method is presented.

In Ref. [25], the standard finite element space Q1
h is extended by discontinuous basis functions qC

T for
T 2TC

h , which are defined by
qC
T ðxÞ :¼

HCðxÞ �
P

j
HCðxjÞ � qjðxÞ; x 2 T ;

0; otherwise:

(

This introduces jTC
h j new degrees of freedom, which influence the height of the jump in the corresponding

elements. qC
T is not only discontinuous across C but also across element boundaries (edges in 2D, faces in

3D) that intersect C where p* is known to be continuous. Due to this disadvantage we did not consider this
method for the approximation of discontinuous pressure in two-phase flows.
3.1. Implementation issues

Let Ch be a piecewise planar approximation of the interface C as described in Section 2.1. For practical rea-
sons we do not consider QC

h but the space QCh
h which is much easier to construct. Here QCh

h is the extended pres-
sure finite element space described above but with C replaced by its approximation Ch. We thus consider the
finite element discretization (2.2) for the choice Qh ¼ QCh

h . As the velocity space Vh is unchanged most of the
terms are discretized like before. Only the evaluation of bð�; �Þ requires further explanation.
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For a basis function vi 2 Vh and j 2 JC the evaluation of
bðvi; q
Ch
j Þ ¼

X
T 02T0h

Z
T 0

qCh
j divvi dx
requires the computation of integrals with discontinuous integrands, as the extended pressure basis function
qCh

j has a jump across the interface. We sum over T 0 2T0
h (and not T 2Th) because Ch is defined as in (2.11).

Let T 2Th be a tetrahedron with T \ suppqCh
j 6¼ ; and T 0 2T0

h with T 0 � T a child tetrahedron created by
regular refinement of T. Due to (3.3) we conclude T 2TC

h , and define
T i :¼ T \ Xi;h; T 0i :¼ T 0 \ Xi;h; i ¼ 1; 2:
Using the definition of qCh
j , cf. (3.1) and (3.2), we get R
Z

T 0
qCh

j divvi dx ¼
Z

T 0
2

qjdivvi dx� HCðxjÞ
Z

T 0
qjdivvi dx ¼

T 0
2

qjdivvi dx if xj 2 X1;

�
R

T 0
1

qjdivvidx if xj 2 X2:

(
ð3:4Þ
The integrands in the right-hand side of (3.4) are continuous and the subdomains T 01; T
0
2 are polyhedral since

by construction Ch consists of piecewise planar segments (cf. Section 2.1). For the computation of the integral
over T 0i we distinguish two cases. The face T 0 \ Ch is either a triangle or a quadrilateral. In the first case one of
the sets T 01; T

0
2 is tetrahedral. In the second case both T 01; T

0
2 are non-tetrahedral, but can each be subdivided

into three subtetrahedra. In all cases, the integration over T 0i can be reduced to integration on tetrahedra, for
which standard quadrature rules can be applied.

4. Numerical results

In this section, we consider the following Stokes problem on the domain X ¼ ð�1; 1Þ3 using the notation
from Section 1
aðu; vÞ þ bðv; pÞ ¼ fSFðvÞ for all v 2 V;

bðu; qÞ ¼ 0 for all q 2 Q:
ð4:1Þ
Here fSF 2 V0 is a surface force term on the interface C which will be specified in the two test cases below. For
simplicity we assume constant viscosity l ¼ 1. The finite element discretization of (4.1) is as follows:
aðuh; vhÞ þ bðvh; phÞ ¼ fSF;hðvhÞ for all vh 2 Vh;

bðuh; qhÞ ¼ 0 for all qh 2 Qh;
ð4:2Þ
where fSF;h 2 V0h is an approximation of fSF. We choose a uniform initial triangulation T0 where the vertices
form a 5� 5� 5 lattice and apply an adaptive refinement algorithm presented in [26]. Local refinement of the
coarse mesh T0 in the vicinity of C yields the gradually refined meshes T1;T2;T3;T4 with local mesh sizes
hC ¼ hi ¼ 2�i�1; i ¼ 0; . . . ; 4 at the interface. For the discretization of u we choose the standard finite element
space of piecewise quadratics:
Vh :¼ fv 2 CðXÞ3jvjT 2 P2 for all T 2Th; vjoX ¼ 0g:

We compute the errors
eu :¼ u� � uh and ep :¼ p� � ph
for different choices of the pressure finite element space Qh to compare the approximation properties of the
different spaces. In our experiments, we used piecewise constant or continuous piecewise linear elements,
i.e. the spaces Q0

h, Q1
h respectively, and the extended pressure space QCh

h .
Test case A: pressure jump at a planar interface

This simple test case is designed to examine interpolation errors of finite element spaces for the approxima-
tion of discontinuous jumps of the pressure variable.

For fSF we choose the artificial surface force fSF ¼ fASF where
fASFðvÞ ¼ r
Z

C
v � nds; v 2 V
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and r > 0 is a constant. Note that fASF 2 V0. This yields the unique solution
Table
Dimen

# Ref.

0
1
2
3
4

u� ¼ 0; p� ¼
C in X1;

C þ r in X2:

�

Here C is a constant such that
R

X p� dx ¼ 0. In our calculations, we used r = 1.
We consider two different interfaces C1 and C2, which are both planes. C1 is defined by C1 ¼ fðx; y; zÞ 2

X j z ¼ 0g. In this case the two subdomains are given by X1 :¼ fðx; y; zÞ 2 X j z < 0g and X2 :¼ X n X1, cf.
Fig. 4. Interface C2 is defined by C2 ¼ fðx; y; zÞ 2 X j y þ z ¼ 0g and the subdomains X1 :¼ fðx; y; zÞ 2 X j
y þ z < 0g and X2 :¼ X n X1. We emphasize that for both interfaces the interface approximation Ch is exact,
i.e. Ch ¼ C, allowing for an exact discretization of the interfacial force, i.e. fASF;h ¼ fASF.

Due to g ¼ 0, u� 2 Vh and the fact that kfASF;h � fASFkV0h
¼ 0 the error bound (2.3) simplifies to
lkeuk1 þ kepkL2 6 c inf
qh2Qh

kp� � qhkL2 : ð4:3Þ
Thus the errors in velocity and pressure are solely controlled by the approximation property of the finite ele-
ment space Qh.

The number of velocity and pressure unknowns for the grids T0; . . . ;T4 with different refinement levels are
shown in Table 1. Note that dim QCh

h > dim Q1
h due to the extended basis functions.

Test case B: static bubble

In this test case (cf. Example 1.2) we consider a static bubble X2 ¼ fx 2 R3 j kxk 6 rg in the cube X with
r ¼ 2=3 (see Fig. 5). We assume that surface tension is present, i.e. fSF ¼ fC with s = 1. This problem has
the unique solution
u� ¼ 0; p� ¼
C in X1;

C þ sK in X2:

�

Since K ¼ 2=r, the pressure jump is equal to ½p��C ¼ 3. A 2D variant of this test case is presented in [20,27].
Note that in this test case the errors in velocity and pressure are influenced by two error sources, namely the

approximation error of the discontinuous pressure p� in Qh (as in test case A) and errors induced by the dis-
cretization of the surface force fC, cf. (2.10).
Fig. 4. 2D illustration of the computational domain X ¼ X1 [ X2 and interface C ¼ C1 for test case A.

1
sions of the finite element spaces for test cases A and B

Test case A, C ¼ C1 Test case A, C ¼ C2 Test case B

dimVh dimQ1
h dimQCh

h dimQ0
h dimVh dimQ1

h dimQCh
h dimQ0

h dimVh dimQ1
h dimQCh

h

1029 125 150 384 1029 125 190 384 1029 125 176
6801 455 536 1984 7749 543 768 2304 5523 337 533

31,197 1657 1946 8384 42,633 2313 3146 11,556 30,297 1475 2295
131,433 6235 7324 33,984 200,469 9607 12,808 52,088 139,029 6127 9413
537,717 24,093 28,318 136,384 871,881 39,229 51,774 221,796 569,787 24,373 37,355



Fig. 5. 2D illustration of the computational domain X ¼ X1 [ X2 and interface C for test case B.
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The number of velocity and pressure unknowns for the grids T0; . . . ;T4 with different refinement levels are
shown in Table 1.

Remark 4.1. As C has constant curvature, for r ¼ 2s
r the two considered surface forces coincide: fC ¼ fASF.
4.1. Test case A: pressure jump at a planar interface

4.1.1. Interface at C ¼ C1

For C ¼ C1, the interface C is only located at the element boundaries of tetrahedra intersected by C, i.e. for
each tetrahedron T intersecting C we have that C \ T is equal to a face of T.

In this special situation, the discontinuous pressure p* can be represented exactly in the finite element space
Q0

h of piecewise constants, thus the finite element solution ðuh; phÞ 2 Vh � Q0
h is equal to ðu�; p�Þ. This is con-

firmed by the numerical results: the exact solution ðu�; p�Þ fulfills the discrete equations (up to round-off
errors). The same holds for the extended finite element space QCh

h .
For the P1 finite elements we obviously have p� 62 Q1

h. The grid T3 after 3 times refinement and the corre-
sponding pressure solution are shown in Figs. 6 and 7. The error norms for different grid refinement levels are
shown in Table 2. The L2-error of the pressure shows a decay of Oðh1=2Þ. This confirms the theoretical results
for the interpolation error minq2Q1

h
kp� � qhkL2 , cf. Section 2.2 and (4.3). The velocity error in the H1-norm

shows the same Oðh1=2Þ behaviour, whereas in the L2-norm the error behaves like Oðh3=2Þ.

4.1.2. Interface at C = C2

We now consider the case C ¼ C2. This problem corresponds to the 2D problem discussed in Section 2.2, cf.
Fig. 2. C is chosen such that C \ F 6¼ F for all faces of the triangulations T0;T1;T2;T3. As a consequence,
Fig. 6. Slice of grid T0
h at x = 0 after three refinements for C ¼ C1.



Fig. 7. 1D-profile of pressure jump at x ¼ y ¼ 0 for ph 2 Q1
h. Three refinements, C ¼ C1.

Table 2
Errors and numerical order of convergence for the P 2 � Q1

h finite element pair, C ¼ C1

# Ref. keukL2 Order keuk1 Order kepkL2 Order

0 4.26E�02 – 4.26E�01 – 5.32E�01 –
1 1.85E�02 1.2 3.41E�01 0.32 3.78E�01 0.49
2 7.09E�03 1.38 2.55E�01 0.42 2.68E�01 0.5
3 2.60E�03 1.45 1.85E�01 0.46 1.90E�01 0.5
4 9.37E�04 1.47 1.33E�01 0.48 1.34E�01 0.5
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p� 62 Q0
h and p� 62 Q1

h, but p� 2 QCh
h . We checked that the finite element solution ðuh; phÞ 2 Vh � QCh

h is in fact
equal to ðu�; p�Þ.

Let us first discuss the results for P1 finite elements. The grid T3 after 3 times refinement and the corre-
sponding pressure solution for P1 finite elements are shown in Figs. 8 and 9 respectively. The error norms
for different grid refinement levels are shown in Table 3. The same convergence orders as for the case
C ¼ C1 are obtained, cf. Table 2.

The results for the P0 finite elements are shown in Table 4. Compared to P1 finite elements, the errors are
slightly larger but show similar convergence orders, i.e. Oðh1=2Þ for the pressure L2-error and velocity H1-error
as well as Oðh3=2Þ for the L2 velocity error.

4.2. Test case B: static bubble

We consider test case B for two different approximations of the CSF term fC, namely the ‘‘naive’’ Laplace–
Beltrami discretization fCh as in (2.14) and the modified Laplace–Beltrami discretization ~f Ch as in (2.17). For
Fig. 8. Slice of grid at x = 0 after three refinements for C ¼ C2.



Fig. 9. 1D-profile of pressure jump at x ¼ y ¼ 0 for ph 2 Q1
h. Three refinements, C ¼ C2.

Table 3
Errors and numerical order of convergence for the P 2 � Q1

h finite element pair, C ¼ C2

# Ref. keukL2 Order keuk1 Order kepkL2 Order

0 2.53E�02 – 2.56E�01 – 5.44E�01 –
1 1.24E�02 1.02 2.25E�01 0.18 3.99E�01 0.45
2 5.03E�03 1.31 1.75E�01 0.36 2.88E�01 0.47
3 1.89E�03 1.41 1.29E�01 0.44 2.06E�01 0.48
4 6.88E�04 1.46 9.35E�02 0.47 1.46E�01 0.49

Table 4
Errors and numerical order of convergence for the P 2 � Q0

h finite element pair, C ¼ C2

# Ref. keukL2 Order keuk1 Order kepkL2 Order

0 3.98E�02 – 3.49E�01 – 7.30E�01 –
1 1.64E�02 1.28 2.75E�01 0.35 4.89E�01 0.58
2 6.14E�03 1.41 2.04E�01 0.43 3.35E�01 0.54
3 2.22E�03 1.47 1.48E�01 0.46 2.34E�01 0.52
4 7.92E�04 1.49 1.06E�01 0.48 1.65E�01 0.51
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the pressure space we choose Qh ¼ Q1
h and Qh ¼ QCh

h . We did not consider the space Q0
h as it yields results com-

parable to those for Q1
h. Table 5 shows the decay of the pressure L2-norm for the four different experiments.

We observe poor Oðh1=2Þ convergence in the cases where ph 2 Q1
h or when the surface tension force fC is dis-

cretized by fCh . For the L2 and H1-norm of the velocity error we observe convergence orders of
Oðh3=2Þ and Oðh1=2Þ, respectively, which is similar to the results in test case A.

We emphasize that only for the combination of the extended pressure finite element space QCh
h with the

improved approximation ~f Ch we achieve OðhaÞ convergence with a P 1 for the pressure L2-error. The velocity
error in the H1-norm shows a similar behaviour (at least first order convergence), in the L2-norm we even have
second order convergence, cf. Table 6.
Table 5
Pressure errors for the P 2 � Q1

h and P 2 � QC
h finite element pair and different discretizations of fC

# Ref. kepkL2 for ph 2 Q1
h kepkL2 for ph 2 QCh

h

fCh Order ~f Ch Order fCh Order ~f Ch Order

0 1.60E+00 – 1.60E+00 – 3.12E�01 – 1.64E�01 –
1 1.07E+00 0.57 1.07E+00 0.57 1.00E�01 1.64 4.97E�02 1.73
2 8.23E�01 0.38 8.23E�01 0.38 6.24E�02 0.68 1.66E�02 1.58
3 5.80E�01 0.51 5.80E�01 0.51 4.28E�02 0.54 7.16E�03 1.22
4 4.13E�01 0.49 4.13E�01 0.49 2.95E�02 0.54 2.83E�03 1.34



Fig. 10. Finite element pressure solution ph 2 Q1
h on slice of T0

4 at z = 0.

Fig. 11. Finite element pressure solution ph 2 QCh
h on slice of T0

4 at z = 0.

Table 6
Errors and numerical order of convergence for the P 2 � QC

h finite element pair and improved Laplace–Beltrami discretization ~f Ch

# Ref. keukL2 Order keuk1 Order

0 7.16E�03 – 1.10E�01 –
1 1.57E�03 2.19 4.26E�02 1.37
2 3.25E�04 2.28 1.70E�02 1.33
3 8.57E�05 1.92 7.43E�03 1.19
4 1.75E�05 2.29 2.40E�03 1.63

56 S. Groß, A. Reusken / Journal of Computational Physics 224 (2007) 40–58
For the improved Laplace–Beltrami discretization ~f Ch the corresponding pressure solutions
ph 2 Q1

h and ph 2 QCh
h are shown in Figs. 10 and 11, respectively.

4.2.1. l-dependence of the errors

We repeated the computations of ðuh; phÞ 2 Vh � QCh
h for the improved Laplace–Beltrami discretization ~f Ch

on the fixed grid T3 varying the viscosity l. The errors are given in Table 7. We clearly observe that the veloc-
ity errors are proportional to l�1 whereas the pressure error is independent of l. This confirms the bound in
(2.10).
Table 7
Errors for the P 2 � QC

h finite element pair and improved Laplace–Beltrami discretization ~f Ch on T3 for different viscosities l

l keukL2 keuk1 kepkL2

10 8.62E�06 7.51E�04 8.71E�03
1 8.57E�05 7.43E�03 7.16E�03
0.1 8.58E�04 7.44E�02 6.87E�03
0.01 8.57E�03 7.44E�01 6.88E�03
0.001 8.57E�02 7.43E+00 7.16E�03
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Remark 4.2. For small l values the discretization can be improved by adding a grad–div stabilization term to
the Stokes equations. In Ref. [28], it is shown that with this term the velocity errors (in k � k1) are proportional
to l�1=2 (instead of l�1) and that for small l values the discretization errors for the velocity are significantly
smaller than without this grad–div term.
5. Outlook

The results for the Stokes test cases presented in Section 4 are quite satisfactory, in the application of the
XFEM method to two-phase flow problems, however, there are some hidden pitfalls. We mention two chal-
lenges related to stability issues and to the application of XFEM to instationary Navier–Stokes two-phase
flow problems.

Regarding stability, one has to treat carefully the situation where the ratio
jsupp q

Ch
j j

jsupp qjj
2 ð0; 1Þ for some

extended basis function qCh
j is either close to zero or close to one, because then the basis functions qj; q

Ch
j

are almost linearly dependent and the resulting system matrices are ill-conditioned. As a consequence, the con-
vergence rate of the iterative solvers can decrease significantly or solvers may even break down. One obvious
possibility to deal with this stability problem is to skip the extended basis functions with relatively ‘‘small’’
contributions. A topic of current research is a suitable strategy on how to decide which extended basis func-
tions should be skipped to obtain a (more) stable basis of the extended pressure finite element space which at
the same time maintains the desired OðhÞ discretization error behaviour. Such a stabilization strategy will be
presented in a forthcoming paper.

As QCh
h depends on the location of the interface C the space QCh

h changes if the interface is moved. Thus the
discretization of b(Æ, Æ) has to be updated each time when the level set function (or VOF indicator function) has
changed. In a Navier–Stokes code solving instationary two-phase flow problems this is nothing special since
mass and stiffness matrices containing discontinuous material properties like density and viscosity have to be
updated as well. What is special about the extended pressure finite element space is the fact that the dimension
of QCh

h may vary, i.e., some extended pressure unknowns may appear or disappear when the interface is mov-
ing. This has to be taken into account by a suitable interpolation procedure for the extended pressure
unknowns.
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